
Física (Mecânica) dos Meios Contínuos

Margarida Telo da Gama Rodrigo Coelho

History

Faces of Fluid Mechanics

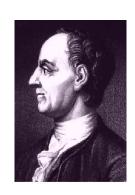
Archimedes (C. 287-212 BC)

Navier (1785-1836)

Newton (1642-1727)

Stokes (1819-1903)

Leibniz (1646-1716)


Reynolds (1842-1912)

Bernoulli (1667-1748)

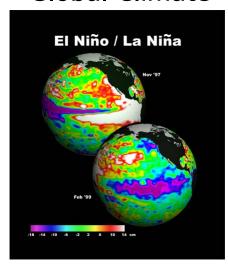
Prandtl (1875-1953)

Euler (1707-1783)

Taylor (1886-1975)

Significance

Fluids everywhere


- Weather & climate
- Vehicles: automobiles, trains, ships, and planes, etc.
- Environment
- Physiology and medicine
- Sports & recreation
- O Many other examples!

Weather & Climate

Tornadoes

Global Climate

Thunderstorm

Hurricanes

Vehicles

Aircraft

High-speed rail

Surface ships

Submarines

Environment

Air pollution

River hydraulics

Physiology and Medicine

Blood pump

Ventricular assist device

Sports & Recreation

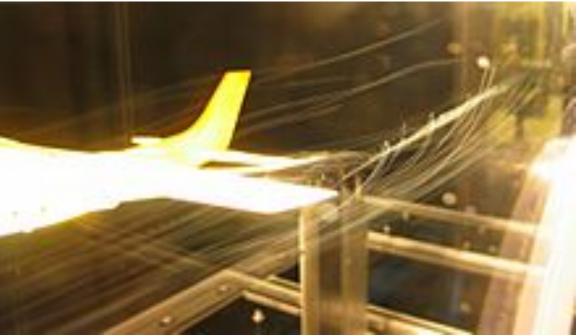
Water sports

Cycling

Offshore racing

Auto racing

Surfing



Analytical Fluid Dynamics

- The theory of mathematical physics problem formulation
- Control volume & differential analysis (RTT)
- Exact solutions only exist for simple geometry and conditions
- Approximate solutions for practical applications
 - Linear
 - Empirical relations using EFD data

Full and model scales: wind tunnel

- Scales: full-scale and model
- Selection of the model scale: governed by dimensional analysis and similarity

Computational Fluid Dynamics

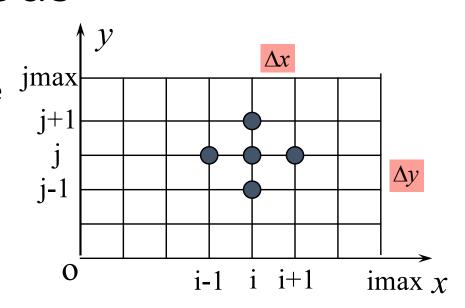
- CFD is use of computational methods for solving fluid engineering systems, including modeling (mathematical & Physics) and numerical methods (solvers, finite differences, and grid generations, etc.).
- Rapid growth in CFD technology since advent of computer

ENIAC 1, 1946

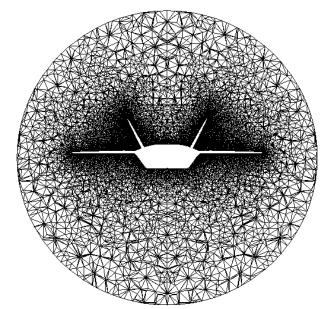
IBM WorkStation

Purpose

- The objective of CFD is to model the continuous fluids with Partial Differential Equations (PDEs) and discretize PDEs into an algebra problem, solve it, validate it and achieve simulation based design instead of "build & test"
- Simulation of physical fluid phenomena that are difficult to be measured by experiments: scale simulations (full-scale ships, airplanes), hazards (explosions, radiations, pollution), physics (weather prediction, planetary boundary layer, stellar evolution).

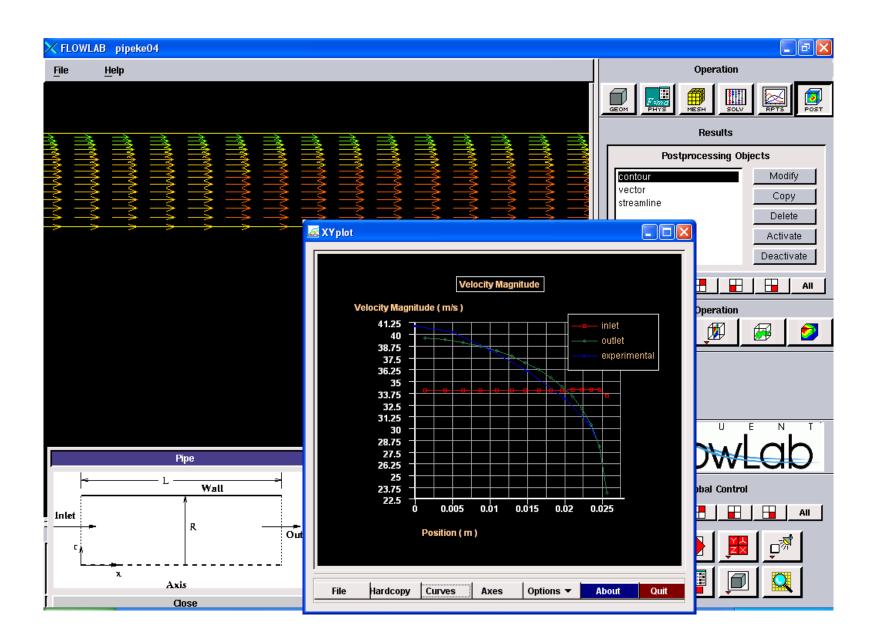

Modeling

- Mathematical physics problem formulation of fluid engineering system
- Governing equations: Navier-Stokes equations (momentum), continuity equation, pressure Poisson equation, energy equation, ideal gas law, combustions (chemical reaction equation), multiphase flows(e.g. Rayleigh equation), and turbulent models (RANS, LES, DES).
- Coordinates: Cartesian, cylindrical and spherical coordinates result in different form of governing equations
- Initial conditions (initial guess of the solution) and Boundary Conditions (no-slip wall, free-surface, zero-gradient, symmetry, velocity/pressure inlet/outlet)
- Flow conditions: Geometry approximation, domain, Reynolds Number, and Mach Number, etc.

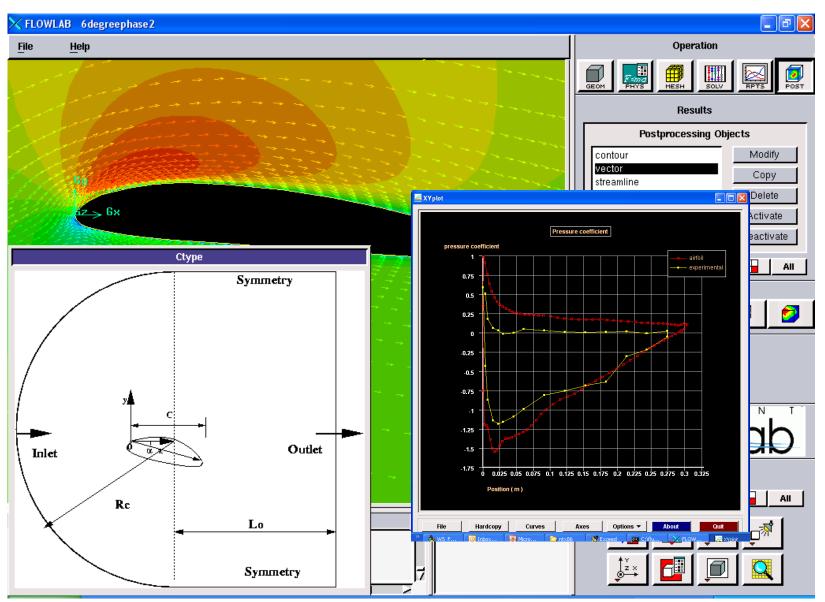

Numerical methods

• Finite difference methods: using numerical scheme to approximate the exact derivatives in the PDEs

$$\frac{\partial^2 P}{\partial x^2} = \frac{P_{i+1} - 2P_i + P_{i-1}}{\Delta x^2}$$
$$\frac{\partial^2 P}{\partial y^2} = \frac{P_{j+1} - 2P_j + P_{j-1}}{\Delta y^2}$$



- Finite volume methods
- Grid generation: conformal mapping, algebraic methods and differential equation methods
- Grid types: structured, unstructured
- Solvers: direct methods (Cramer's rule, Gauss elimination, LU decomposition) and iterative methods (Jacobi, Gauss-Seidel, SOR)

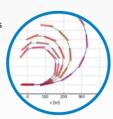


Slice of 3D mesh of a fighter aircraft

"Hands-on" experience using CFD Interface (pipe template)

"Hands-on" experience using CFD Interface (airfoil template)

Designing, building and operating a submarine


Concept evaluation

- · Hull main parameters
- · Location and size of the sail and control surfaces
- · Choice of propulsion arrangement

3 Power Requirement

- Resistance and self-propulsion tests in the towing tank
- · Wake flow distribution
- · Rudder forces and moments

Simulation of turning circle manoeuvre in Submo. The interface to Submo can be entirely web server-based either in-house or in the cloud.

Manoeuvring performance

- · Captive tests in wave basin, hydrodynamic coefficients for simulation model
- · Simulations of standard manoeuvres and depth change
- · Autopilot and depth controller
- · Stability in the horizontal and vertical planes

A submarine in a simulator environment. The crew can practise repeat manoeuvres and practise operations which are not easy to perform on a real submarine.

Designing the submarine

Basic hydrodynamic design

- Hull
- Sail
- · Control surfaces

CFD calculation of a generic submarine. Detailed information about different flow phenomena can be obtained.

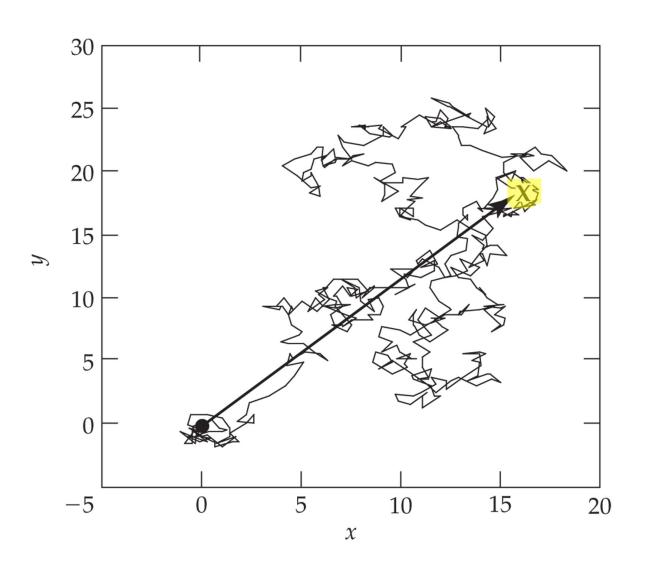
Verifying the design - model tests and simulations

- Cavitation tunnel tests
- · High efficiency
- Good cavitation properties
- · Low radiated noise

Model of the IZAR P650 tested at SSPA. The same model was used in all SSPA facilities.

In operation

Simulator


- Crew training
- · Development of hardware for a submarine's bridge

In operation

- · Depth keeping in periscope conditions under a seaway
- · Simulation of emergency recovery manoeuvres
- Compensation and trimming
- · Safe operation envelopes

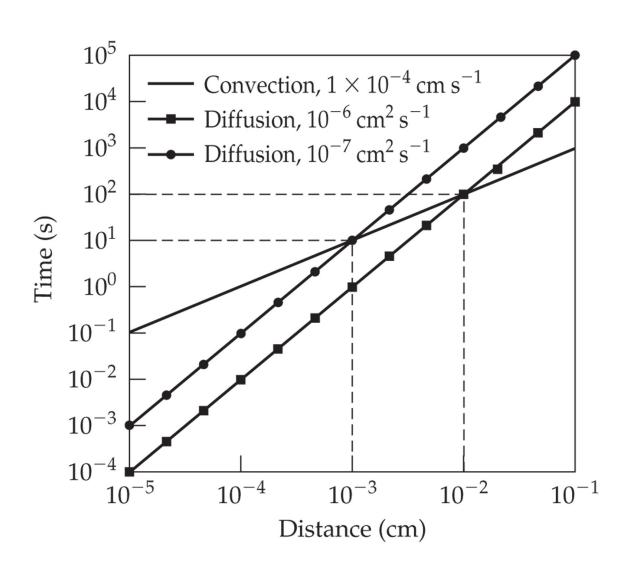
Diffusion & Convection

Diffusion: Random walk

Range of Values for the Binary Diffusion Coefficient, D_{ij} , at Room Temperature

Diffusing quantity	Diffusion coefficients (cm ² s ⁻¹)
Gases in gases	0.1 to 0.5
Gases in liquids	1×10^{-7} to 7×10^{-5}
Small molecules in liquids	1×10^{-5}
Proteins in liquids	1×10^{-7} to 7×10^{-7}
Proteins in tissues	1×10^{-7} to 7×10^{-10}
Lipids in lipid membranes	1×10^{-9}
Proteins in lipid membranes	1×10^{-10} to 1×10^{-12}

Range of Values for Viscosity, Density, and Kinematic Viscosity at Room Temperature


	Viscosity, $\mu \text{ (g cm}^{-1} \text{ s}^{-1})$	Density, ρ (g cm ⁻³)	Kinematic viscosity, $\nu = \mu/\rho \text{ (cm}^2 \text{ s}^{-1}\text{)}$
Gases	10 ⁻⁴	0.001	0.1
Liquids			
Water	0.01	1.0	0.01
Glycerol	10	1	10
Blood	0.03	1.2	0.025

Relations between Fluxes and Gradients for Molecular Transport			
Molecular transport mechanism	Flux	Gradient	Coefficient of proportionality
Momentum Mass Energy	Shear stress Mass or molar flux Energy	Velocity Concentration ^a Temperature	Viscosity Diffusion coefficient Thermal conductivity

Relative Importance of Diffusion and Convection				
Molecule	$MW (g mol^{-1})$	$D_{ij} ({\rm cm}^2 {\rm s}^{-1})$	Diffusion time, L^2/D_{ij} (s)	$Pe = Lv/D_{ij}$
Oxygen	32	2×10^{-5}	5	0.05
Glucose	180	2×10^{-6}	50	0.50
Insulin	6,000	1×10^{-6}	100	1.0
Antibody	150,000	6×10^{-7}	167	1.67
Particle	Diameter	D_{ij} (cm ² s ⁻¹)	Diffusion time (s)	Pe
Virus	0.1 µm	5×10^{-8}	2,000	20
Bacterium	1 μm	5×10^{-9}	20,000	200
Cell	10 μm	5×10^{-10}	200,000	2,000

Note: For $L=100~\mu m$, and if $v=1~\mu m~s^{-1}$, the time for convection is always equal to L/v=100~s for all molecules and particles.

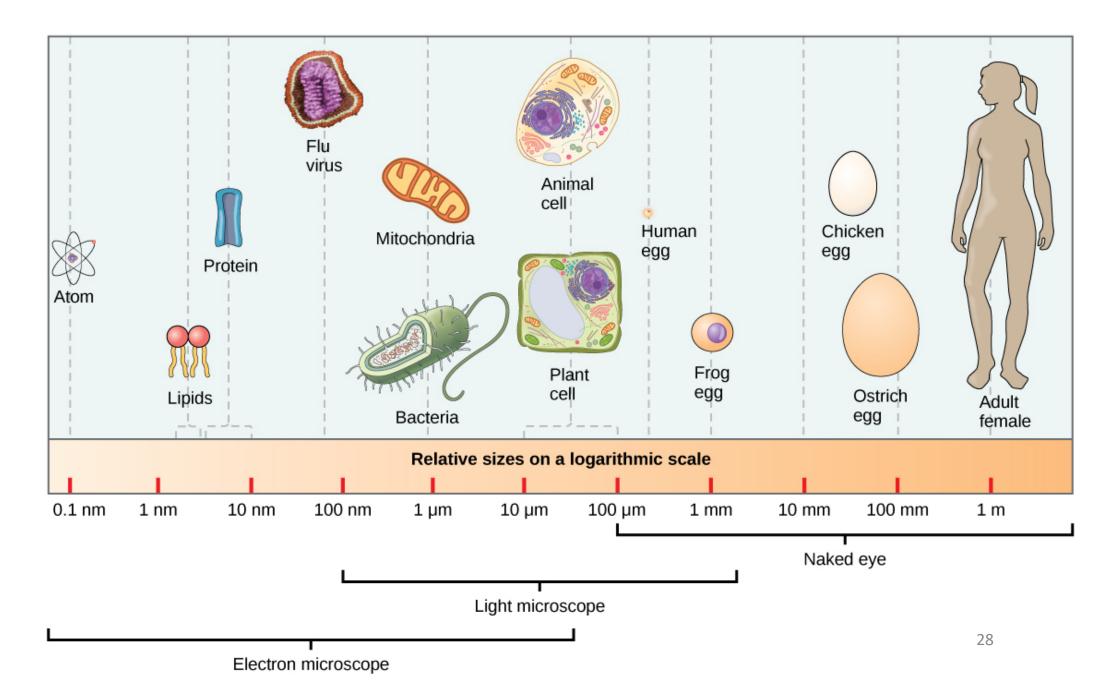
Diffusion and convection times

Reynolds number

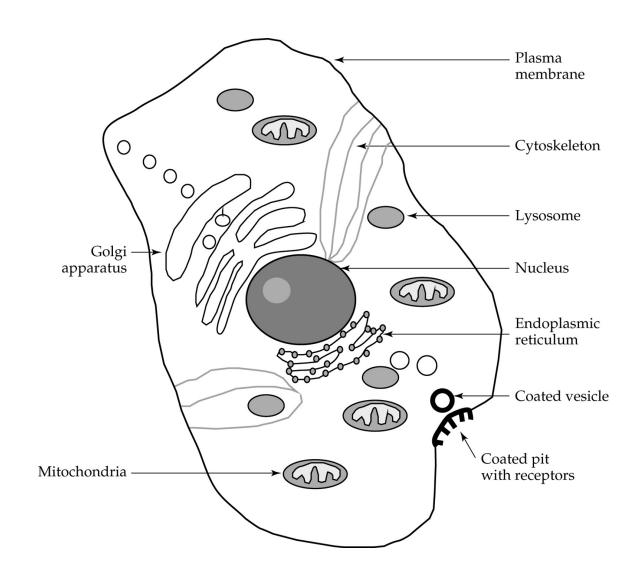
The Reynolds number is the ratio of inertial forces to viscous forces within a fluid which is subjected to relative internal movement due to different fluid velocities.

$$Re = rac{
ho VL}{\eta}$$

Peclet number

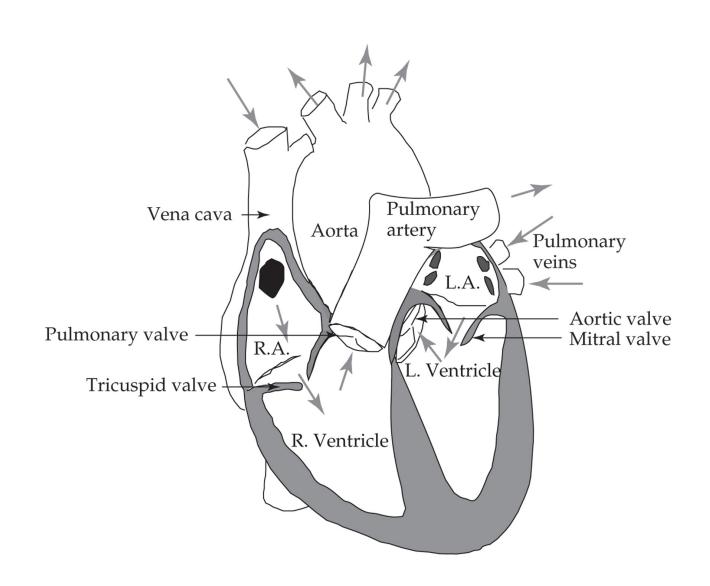

The Peclet number is the ratio of the rate of advection of a physical quantity by the flow to the rate of diffusion of the same quantity driven by an appropriate gradient.

$$Pe = \frac{VL}{D}$$


(Bio)Física dos Meios Contínuos

Margarida Telo da Gama Rodrigo Coelho

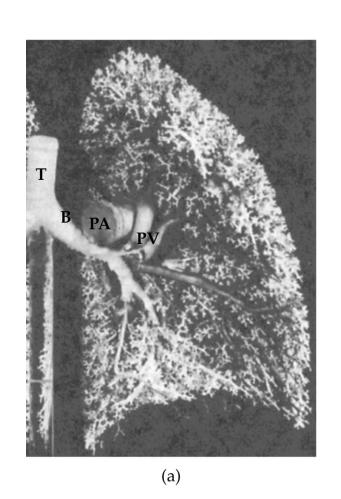
Scales of living systems

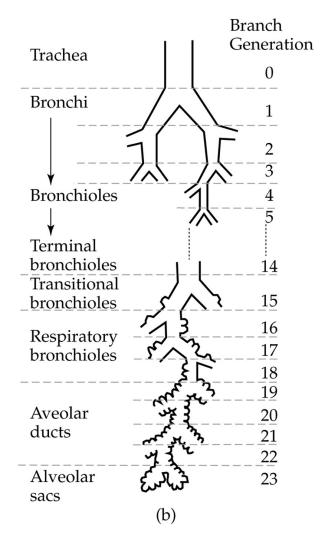


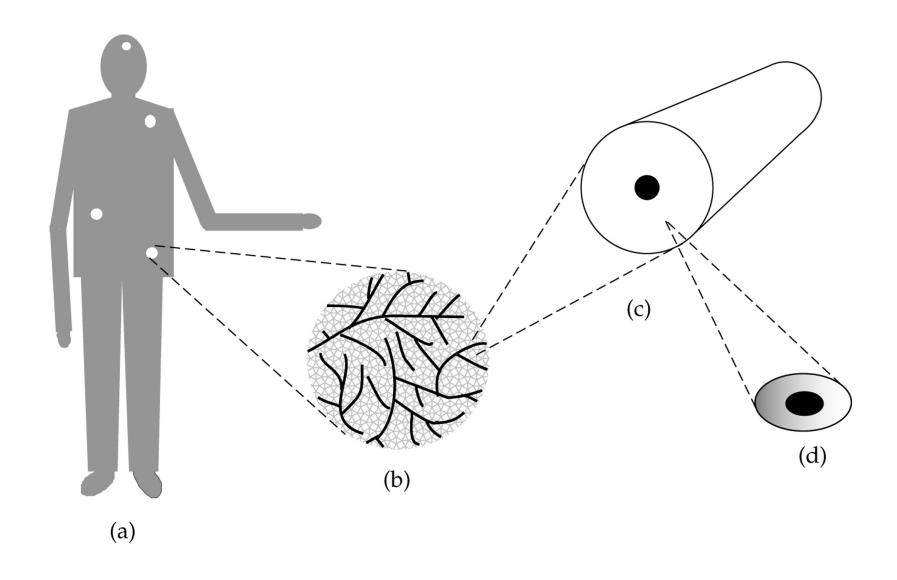
Mammalian eukaryotic cell & organelles.

Examples of Organs and Organ Systems with Transport Functions			
Organ or organ system	Transport functions		
Respiratory system	Delivery of oxygen from the lungs to the blood and transport of carbon dioxide in the opposite direction		
Cardiovascular system	Transport of oxygen within red blood cells		
	Removal of carbon dioxide		
	Delivery of antibodies and cells of immune system to sites of infection		
	Thrombosis and hemostasis		
Gastrointestinal tract	Digestion and absorption of nutrients		
Liver	Carbohydrate storage and release		
	Cholesterol metabolism and lipoprotein synthesis and metabolism		
	Synthesis of plasma and transport proteins (e.g., albumin, transferring)		
	Synthesis and export of molecules for tissue energy metabolism		
	Urea synthesis		
	Metabolism of toxins		
Kidneys	Filtration of plasma		
•	Removal of urea and waste products		
	Water reabsorption		
	Maintenance of plasma volume and blood pH		

Diagram of the heart showing valves, veins and arteries

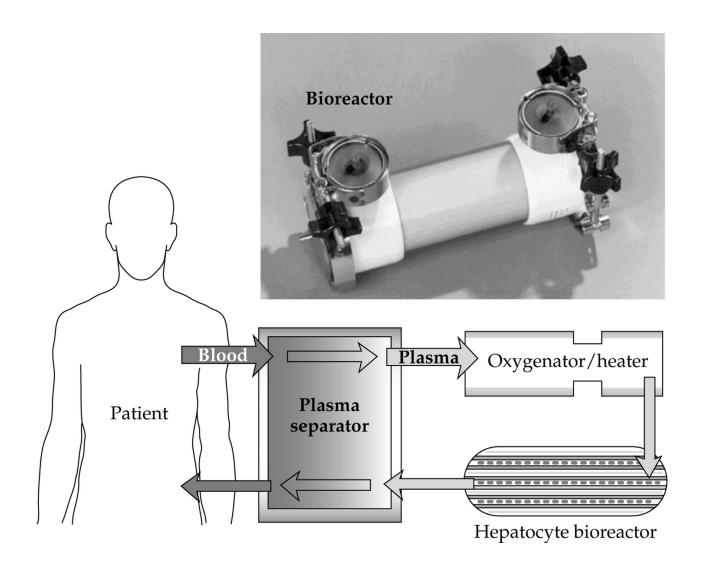



Distribution of Blood Volume		
Region	Total (%)	
Small veins and venules	45-53	
Large veins	15	
Lungs	10-12	
Heart	8-11	
Systemic arteries	10-12	
Capillaries	4–5	


Blood Flow Distribution during Rest and Heavy Exercise

	Rest		Heavy exercise	
Region	L min ⁻¹	Percent of cardiac output	L min ⁻¹	Percent of cardiac output
Digestive system	1.40	24	0.30	1
Renal	1.10	19	0.90	4
Brain	0.75	13	0.75	3
Heart	0.25	4	1.00	4
Skeletal muscle	1.20	21	22.00	85.5
Skin	0.50	9	0.60	2
Others	0.60	10	0.10	0.5
Cardiac output	5.80	100	25.65	100.0

Schematic of the airways in the lung



Drug delivery to tumor cells at four levels: (a) the body (~1 m), (b) the tissue (~1 cm), (c) the microvessel (~0.01 cm), and (d) the cell (~10 μ m).

Flow for extracorporeal artificial liver.

